Czy można zobaczyć pasmo 2.4GHz?

Ludzkie oko jest wrażliwe tylko na wąski zakres częstotliwości fal elektromagnetycznych – na światło widzialne. Długości fal radiowych wykorzystywanych w komunikacji bezprzewodowej są całkowicie niewidoczne dla człowieka, gdyż są o około osiem rzędów dłuższe od widma światła.

W tym artykule dowiesz się, co to jest analiza częstotliwości oraz jak na jej podstawie możesz dowiedzieć się, co hula w radiu. Jest to kontynuacja naszego wpisu Pasmo 2,4GHz – co tutaj hula prócz WiFi w którym opisywaliśmy technologie zakłócające naszą komunikacje WiFi w 2.4GHz.

  • Analizatory spektrum wykorzystywane są do zobrazowania widma częstotliwości.
  • Prezentację widma częstotliwości w funkcji czasu najlepiej pokazać przy pomocy tzw. wykresu wodospadowego.
  • Na podstawie wykresów wodospadowych można zidentyfikować prawdopodobne źródła zakłóceń w domenie RF.
  • Artykuł przygotowany przy współpracy z producentem platformy 7Signal, który oferuje analizator widma w każdym urządzeniu Sapphire Eye

Częstotliwości regulowane i ogólnodostępne

Wytwarzanie i przesyłanie fal radiowych jest regulowane przepisami regionalnymi lub krajowymi, a następnie koordynowane na szczeblu międzynarodowym przez międzynarodowy organ, Międzynarodowy Związek Telekomunikacyjny (ITU). Celem takiego zabiegu jest zapobieganie ingerencjom między różnymi zastosowaniami. W tym artykule skupię się na jednym z najbardziej problematycznym z zakresów wykorzystywanych w sieciach bezprzewodowych, czyli na częstotliwości 2,4GHz.

Zgodnie z FCC i ITU nie możemy monitorować zastrzeżonych częstotliwości. Tylko te otwarte. W naszym przypadku skupiamy się na dość wąskim zakresie, na częstotliwościach obsługiwanych przez technologię Wi-Fi.

Międzynarodowy Związek Telekomunikacyjny (ITU).

Analizator widma częstotliwości fal radiowych

Zacznijmy od uproszczonej definicji, czym jest analizator widma. Jest to urządzenie, które mierzy wielkość sygnału wejściowego w funkcji czasu, w pełnym zakresie częstotliwości pomiarowych przyrządu. Podstawowym zastosowaniem jest pomiar mocy widma znanych i nieznanych sygnałów.

Wynik analizatora spektrum najczytelniej jest przedstawić na wykresie wodospadowym. Wykresy wodospadowe pokazują, jak dwuwymiarowe informacje zmieniają się w czasie lub wraz z inną zmienną. Zwykle mają postać wykresu dwuwymiarowego, w którym na osi poziomej widzimy moc sygnału dla poszczególnych częstotliwości, a na osi pionowej następujące po sobie pomiary widma. Poziom zmierzonej mocy reprezentowany jest kolorem. Zwykle od czerwonego poprzez żółty, niebieski do czarnego — choć użytkownik najczęściej może zdefiniować swoją paletę kolorów.


Analiza częstotliwości 2.4GHz na bazie wykresów wodospadowych

Spójrzmy na kilka przykładów pomiarów wykonanych dla częstotliwości wykorzystywanych w komunikacji bezprzewodowej i zróbmy wstępną analizę otrzymanych spektrogramów. W tym artykule będę analizować tylko otwarte pasmo 2,4GHz, czyli przedział 2400 do 2484 MHz.

Wykres wodospadowy

Powyżej mamy całkiem ładny spektrogram. Łatwo możemy zidentyfikować pasma, w których realizowana jest komunikacja WiFi w standardzie 802.11 b/g/n. Łatwo dostrzec, iż są to kanały 1,6,11 o szerokości 20MHz. Pomiędzy nimi jest wyraźna przerwa o niższych niebieskich poziomach — tego właśnie powinniśmy oczekiwać. Najbardziej wykorzystywany kanał 11, natomiast najmniej — kanał 1.

Komunikacja Bluetooth w pasmie 2.4GHz

Wykres wodospadowy

Drugi przykład wygląda inaczej. Nadal możemy zobaczyć wykorzystanie trzech kluczowych kanałów, głównie 1 i 6, znacznie mniej kanał 11. Widać również trzy wąskie, pionowe pasma i pojawiające się piki (czerwone plamy) w połowie wykresu. Te anomalie to komunikacje Bluetooth, właściwie BT LowEnergy. Te trzy widoczne pionowe żółte pasy to są kanały reklamowe BTLE — Advertisment Channels. Szczegółowe informacje na temat komunikacji BT/BLE znajdziesz w artykule: „Częstotliwości komunikacja BLE”.

Widoczne czerwone plamy wraz ze wzmożoną amplitudą na wszystkich częstotliwościach (kreska od lewej do prawej) to moment przejścia BT z ogłaszania do komunikacji. Sama komunikacja skacze w całym paśmie częstotliwości. Protokół BT stara się omijać wykorzystywane częstotliwości, szczególnie obsadzone przez Wi-Fi. W tym przypadku mamy dość gęsto wykorzystaną architekturę WiFi w standardzie 802.11 b/g/n z wykorzystaniem kanałów 1/6/11. Właściwie nie ma wolnego kanału na komunikację BT. Tym samym, obie technologie mogą się zakłócać.

Wykres wodospadowy

Następny przykład wygląda, jakby ktoś w poprzek rozmazał czerwoną plamę. Obserwujemy działanie większej ilości urządzeń BT. Problem występuje w godzinach pracy i zdecydowanie nasila się na koniec dnia roboczego. Po godzinach pracy — już go nie widać. W celu identyfikacji źródła należy wykonać dodatkową analizę, w punkt wystąpienia — czyli w godzinach 13-17.

Wykres wodospadowy

W tym przykładzie widzimy piki pochodzące od komunikacji reklamowej BT oraz widać również wiele pików w innych częstotliwościach. Początkowo widać jak komunikacja skacze pomiędzy poszczególnymi kanałami, później stabilizuje się na konkretnych częstotliwościach. Są to pasma o szerokości 1MHz, wykorzystywane przez urządzenia BT. W tej sytuacji należy się przyjrzeć szczególnie uważnie co powoduje taki ruch. Ponieważ jest to ruch przez cały tydzień, przez całe dnie, od góry do dołu wykresu, jako źródło zakłóceń raczej można wykluczyć urządzenia peryferyjne użytkowników.

Niski datarate

Wykres wodospadowy

Powyższy przykład również pokazuje wykorzystanie 3 kanałów WiFi wraz z 3 kanałami reklamowymi BT LowEnergy. Ale spójrzmy na komunikację w kanał 6, o szerokości 20MHz. Kanał ten jest znacznie mocniej używany niż pozostałe dwa kanały. Jego spektrum jest zajęte właściwie w całej szerokości. Widzimy znacznie większą aktywność w środkowej części, ze spadkami dopiero na krawędziach zakresu. Oznacza to, iż działa tutaj urządzenie w starszej technologii lub podłączone z mniejszą prędkością, np 1, 2, 5.5 lub 11 Mbps.

Komunikacja analogowa w 2,4GHz

Wykres wodospadowy

Na powyższym wykresie widać właściwie całkowicie zamazane częstotliwości dla kanału 1 oraz nawet początek kanału 6. Przez cały wykres (około 48 godzin) widać zajętość konkretnych częstotliwości. Zdecydowanie nie jest to obraz komunikacji BT. Patrząc na ciągłość widma, stabilność częstotliwości oraz stabilność amplitudy sygnału można wywnioskować, że jest to komunikacja analogowa. Urządzenia analogowe najczęściej nadają non-stop, nawet ciszę. Komunikacja cyfrowa zwykle ma przerwy pomiędzy pakietami.

Jest to realny przykład analizy widma wykonanej w szpitalu, wykorzystującego bezprzewodowe zestawy słuchawkowe Hearing-Aids. Nie Bluetooth — lecz urządzenia analogowe, działające w paśmie 2,4GHz.

Wpływ 802.15.4

Wykres wodospadowy

Na tym przykładzie możemy zaobserwować coś nowego. Widać na kanale 11 komunikację narrow-band, czasami pojawią się również szybsza transmisja. Również kanały 1 i 6 są w znacznym stopniu wykorzystane. Unikalny jest widoczny pik w okolicach 2450MHz.

Nie jest to BT, bo pojawia się z prawej, a nie lewej strony kanału 6. Biorąc pod uwagę jego orientacyjną szerokość 2-3MHz może sugerować, że jest to transmisja 802.15.4 – czyli Zigbee lub Threed czyli urządzeń IoT. Protokół Zigbee w zakresie 2,4GHz ma dostępnych aż 16 kanałów, z czego 4 z nich nie pokrywają się z kanałami 1/6/11 w 802.11 i nie powinny wprowadzać zakłóceń.

Środowisko Contact Center

Wykres wodospadowy

Kolejny wykres jest paskudny z punktu widzenia Wi-Fi. Widzimy jak komunikacja BT niszczy możliwości komunikacyjne w całym spektrum. Wynika to ze sposobu działania protokołu WiFi, który czeka na wolne pasmo i możliwość nadawania. WiFi nie analizuje jaki protokół nadaje, tylko bierze pod uwagę obecność mocnego sygnału. Jeśli obecny sygnał jest powyżej zdefiniowanego progu, WiFi poczeka z rozpoczęciem nadawania.

Należy mieć na uwadze, że jeśli sygnał BT będzie nieznacznie poniżej progu, WiFi zacznie nadawać dopiero po spełnieniu tego warunku. Wtedy całkiem możliwe, że żadna komunikacja ani WiFi w standardzie 802.11 b/g/n ani Bluetooth, nie będzie skuteczna i będzie powtarzana (retires).

Na podstawie doświadczenia możemy podejrzewać, że są to urządzenia typu audio — słuchawki, zegarki, peryferia — mysz/klawiatura. Taki obraz może być w środowisku Contact Center, gdzie mamy spory, niezakłócony obszar i każdy z użytkowników ma swoje peryferia BT.

Wykres wodospadowy

Tutaj jeszcze wyraźniej widać wpływ urządzeń peryferyjnych na komunikację w domenie 2,4GHz. Widzimy w różnym stopniu wykorzystanie przez WiFi kanałów 1/6/11. Ale w ciągu dnia wyraźnie widzimy coś bardzo dziwnego.

Zakłócenia zaczynają się rano, około 9 rano, kończy się ok godziny 17:00. Jest to wykres pomiarów zrobionych w obiekcie Call Center, gdzie w momencie jak wszyscy przychodzą do pracy, to pojawiają się zakłócenia. Potem koniec pracy, wszyscy wychodzą i…. całkowity brak zakłóceń. Co ciekawe, znikają nawet kanały reklamowe BT. Wyraźnie widać okresowość zdarzeń, z przerwą weekendową. Adaptery bezprzewodowe lub moduły BT zabierane są przez użytkowników wraz ze sprzętem do domu, lub wszystkie stacje są w pełni wyłączania.

Inne źródła zakłóceń

Wykres wodospadowy

Tutaj mamy przykład z jednego z lotnisk. Widzimy pewne zagęszczenia działania urządzeń BT — poziome wykorzystania całej częstotliwości. Najciekawszym jest czerwony pik w okolicach 2407MHz widoczny na końcu wykresu. Niestety nie udało się zidentyfikować żródła interferencji.

Możliwe, że analogowy transmiter pomiędzy jakimiś urządzeniami do synchronizacji danych. Na pewno nie było to nawet obce WiFi. Jednak najważniejsze w takim tuobleshootingu to identyfikacja problemu. Problem został rozwiązany poprzez zmianę konfiguracji WiFi i zmianę wykorzystywanych kanałów przez AP — tak, aby od tych częstotliwości trzymać się daleko.

Niestety korzystając z pasma ogólnodostępnego, nie jesteśmy w stanie powiedzieć jakie urządzenia wykorzystują pasmo. Możemy tylko na podstawie swojego doświadczenia przypuszczać źródło. W powyższym przypadku może to być najnowszy model systemu monitorowania bagażu. Czy możemy powiedzieć „hej, wyłączcie to urządzenie!”? Na pewno nie. Ale robiąc ciągłą (lub chociaż okresową) analizę widma, możemy zobaczyć jakich częstotliwości powinniśmy unikać.

Wykres wodospadowy

Ostatni przykład bardzo dobrze obrazuje różne sytuacje, z jakim się spotykamy. Te zakłócenia pojawiły się raz, trwały kilka godziny i nigdy więcej się już nie pojawiły. Podejrzewamy uruchomienie prywatnego hotspot’u. Wyraźnie widać, iż na szerokość kanału ustawiono na 40MHz, pewnie aby przesłać duże ilości danych. Całość działa się w nocy. Wnioskuję, że ktoś przesyłał duży plik, niestety zakłócając pozostałą komunikację w sieci WiFi.


Nie wiesz, czemu pomimo „poprawnej” konfiguracji Twoja sieć nie działa tak, jak powinna? Zastanawiasz się, co powoduje okresowe spadki wydajności? Chcesz zrobić u siebie analiza częstotliwości? Skontaktuj się z naszym zespołem, który zidentyfikuje problem i pomoże usunąć niedogodności.

Old WiFi sign by a palm-lined boulevard

Pasmo 2,4GHz – co tutaj hula prócz WiFi

2.4Ghz to nie tylko WiFi ale także innych protokoły komunikacyjnych działających w paśmie 2,4GHz – Bluetooth, IoT, Zigbee. W Europie komunikacja Bluetooth oraz coraz częściej wykorzystywana komunikacja IoT wykorzystuje pasmo 2,4GHz. W skrócie:

  • Pasmo 2,4GHz prócz WiFi, to również Bluetooth, IoT, Zigbee, Thread i Matter.
  • Komunikacja odbywa się w pełnym zakresie częstotliwości 2,4 GHz
  • W BLE dostępnych jest 40 kanałów o szerokości 1MHz, w tym 37 kanały danych i 3 kanały reklamowe
  • Pomiędzy kanałami są „puste” szczeliny o szerokości 1MHz
  • Transmisja danych w BLE „skacze” po wszystkich kanałach.
  • W 802.15.3 w paśmie 2,4GHz dostępnych jest 16 kanałów o szerokości do 2MHz, z przerwą 5MHz.

Standard Bluetooth / Bluetooth Low Energy

Bluetooth Low Energy (BTLE/BLE) to najnowszy standard Bluetooth IEEE 802.15.1 opublikowany przez Bluetooth SIG. Jego najnowsza wersja w momencie publikacji to 5.3. Urządzenia (inicjator, tj. master i reklamodawca, tj. slave) komunikują się w trybach punkt-punkt lub rozgłoszeniowym, wykorzystując „kanały reklamowe” i „kanały danych”.

BlueTooth wykorzystuje pasmo 2,4GHz nielicencjonowane pasma przemysłowe, naukowe i medyczne (ISM). Rozciąga się ono od 2400 do 2484 MHz. W komunikacji BTLE wykorzystywanych jest 40 kanałów. Lista kanałów składa się z dwóch typów kanałów: kanałów komunikacyjnych 00-36 (Data Channels) i kanałów reklamowe 37-39 (Advertising channels). Każdy kanał BLE ma do dyspozycji pasmo 1MHz. A pomiędzy poszczególnymi kanałami jest przerwa również 1 MHz.

Poniżej przedstawiłem zestawienie kanałów wykorzystywanych przez protokół BLE, wraz z wyszczególnieniem kanałów reklamowych oraz kanałów transmisji danych.

Lista kanałów BLE ogłoszeniowe i transmisji danych.
Lista kanałów BLE reklamowe i transmisji danych. Źródło: www.rfwireless-world.com

Wskazane częstotliwości odnoszą się do środka kanału. Na przykład dla kanału 10 (2426MHz) wykorzystuje zakres częstotliwości 2425,5-2426,5MHz. Przed kanałem 10 jest przerwa 1MHz (2424,5-2425,5MHz) oraz za kanałem 10 jest 1MHz pustej częstotliwości (2426,5-2427,5MHz).

Zastosowanie i funkcjonalności poszczególnych kanałów oraz ich częstotliwość:

Kanały reklamowe BLE

Kanały reklamowe BLE Advertising channels są to kanały, które zawierają dane transmisyjne dla aplikacji i pomagają wykrywać się urządzeniom przed nawiązaniem połączenia. Urządzenie BT używają dowolnego kanału reklamowego do transmisji/odbioru pakietów reklamowych różnych typów. Kanały reklamowe działają na kanałach 37-39 (2402MHz, 2426MHz i 2480MHz) i przenoszą one pakiety PDU (and. protocol data unit) kanału reklamowego.

Kanały danych BLE

Urządzenia mogą wysyłać do siebie dane dopiero po nawiązaniu połączenia między sobą. W każdym połączeniu wyróżniamy urządzenie nadrzędne i podrzędne. Wymiana pakietów PDU w kanale danych realizowana jest podczas zaplanowanych zdarzeń połączenia. Urządzenia master i slave mogą używać dowolnego z kanałów danych BLE do transmisji/odbioru pakietów.

Komunikacja IEEE 802.15.4

Specyfikacja IEEE 802.15.4 definiuje ilość mocy nadawczej wysyłanej z radia, zakres częstotliwości, przepustowość, szybkość transmisji danych i inne parametry. Na bazie tej specyfikacji opiera się protokół Zigbee, Thread oraz najnowszy protokół Metter.

Wszystko są to technologie łączności bezprzewodowej o niskim poborze mocy i niskiej szybkości transmisji danych. Wykorzystują nielicencjonowane pasma przemysłowe, naukowe i medyczne (ISM) w trzech zakresach: a) 868,00 – 868,6 MHz (kanał 1 – EU), b) 902,0 – 928,0 MHz (kanał 1-10 – USA) i c) 2400 – 2484 MHz (kanał 11-26 – WorldWide).

Zigbee wykorzystuje 16 kanałów w zakresie częstotliwości 2,4GHz. Na tych kanałach każde urządzenie Zigbee wykorzystuje szerokość pasma do 2 MHz. Pomiędzy dwoma dowolnymi kanały jest pasmo ochronne 5 MHz, aby zapobiec zakłóceniom powodowanym przez inne urządzenia Zigbee. Szybkość transmisji danych, jaką można osiągnąć w paśmie 2,4 GHz, wynosi 250 Kb/s na kanał. Jednak rzeczywista przepustowość, ze względu na różne czynniki, jest znacznie mniejsza niż określone wartości. Powodem jest narzut pakietów, opóźnienia przetwarzania i opóźnienia kanału.

Ponieważ Zigbee i WiFi wykorzystują pasmo 2,4GHz mogą występować interferencje pomiędzy nimi. Biorąc pod uwagę, iż WiFi zazwyczaj zajmuje kanały 1/6/11, wiele kanałów Zigbee jest wolnych od zakłóceń — w szczególności kanały 15, 20, 25, i 26.

Kanały WiFi, BLE i Zigbee

Poniżej przedstawiłem, jak pasmo 2,4GHz jest wykorzystywanych przez WiFi, BLE oraz Zigbee, wraz z uwzględnieniem podziału na poszczególne kanały.

Kanały WiFi, BLE i Zigbee
Kanały WiFi, BLE i Zigbee. Źródło: www.rfwireless-world.com

Korzystam z urządzeń Bluetooth, IoT, Zigbee. Czy jest to dla mnie duży problem?

Jak widać w powyższej analizie coraz popularniejsze wykorzystanie urządzeń Bluetooth, IoT, Zigbee może powodować interferencje w sieciach bezprzewodowych. Każda dobrze skonfigurowana siec WiFi powinna loadbalance’ować użytkowników do sieci 5GHz, pozostawiając pasmo 2.4GHz dla bardzo starych urządzeń lub urządzeń tylko IoT.

Sama weryfikacja pasma 2.4GHz pod kątem jego utylizacji przez urządzenia Bluetoogh oraz IoT, powinna odbywać się za pomocą analizatora widma, który jest dostępny w urządzenia Ekahau Sidekick lub za pomocą Hardware’owych sond 7Signal.

Jeśli chcesz posiadać niezawodną i stabilną sieć bezprzewodową oferującą komunikację 802.11, 802.15.1 i 802.15.4 (WiFi, Bluetooth, Zigbee), skontaktuj się z nami naszym zespołem.

Short Guard Interval – kiedy gorzej znaczy lepiej

Jak często spotykamy się z źle skonfigurowanymi sieciami bezprzewodowymi? Niestety złe konfiguracje użytkowników lub powierzenie konfiguracji standardowym algorytmom kontrolera sieci bezprzewodowej, w tym parametr Short Guard Interval, to pierwszy i obok ogólnych interferencji innych systemie 802.11, główny problem sieci bezprzewodowych. 

Niestety część z tych problemów dotyczy właśnie standardowych konfiguracji dostępnych z punktu widzenia kontroler, na które to ustawienia administratorzy systemów prawie w ogóle nie zwracają uwagi. 

Dzisiejsze rozważania będą dotyczyły parametru Guard Interval, który jest konfigurowalny w większości rozwiązań sieci bezprzewodowych w tym w wszystkich rozwiązaniach typu Enterprise. Czym jest Guard Interval? 

Zacznijmy od kwestii wielosciezkowosci. Jak wiemy z teorii propagacji fali elektromagnetycznej symbole w transmisji 802.11 mogą docierać miedzy nadajnikiem a odbiornikiem w roznych sposób. Standard 802.11n wprowadza nam jeszcze mozlisc jednoczensje transmiji symboli z roznych zestaów nadawczo-odbiorczych, co poteguje nam zjawisko „nakładania się symboli” w urządzeniu odbiorczym. Innymi slowy zagubiony czy tez spozniony symbol, który nie został jeszcze całkowicie przetworzony przez odbiornik interferuje nam z odbieranym wlasnie nowym symbolem wysłanym po określonym przez nadajnik czasie. No właśnie… „określonym czasie”.

Rys. 1 Graficzne przedstawienie prawidłowej transmisji symbolu 802.11 oraz sytuacji interferencji międzysymbolowej powstałej w przypadku ustawienia parametru Guard Interval na za niską wartość.

Standardy transmisji sieci bezprzewodowych 802.11a/b/g używają wartości Guard Interval (GI) wynoszącej 800 nanosekund. Czyli symbol transmitowany jest przez 3.2 mikrosekundy i następnie 0.8 mikrosekundy następuje okres oczekiwana dając sumaryczną wartość transmisji symbolu 4 mikrosekundy.

Standard 802.11n wprowadza możliwość korzystania z GI na poziomie 400 nanosekund (0.4 mikrosekundy) przy założeniu, że miedzy nadajnikiem a odbiornikiem nie występują duże różnice ścieżek.  Skraca nam to czas trwania transmisji symbolu z 4 do 3.6 mikrosekundy, co bardzo chętnie wykorzystują producenci sprzętu (a bardziej działy marketingu) bo krótszy czas transmisji symbolu przekłada się wprost proporcjonalnie na zwiększenie teoretycznej przepustowości radiowej transmisji, czym można się pochwalić w Data Sheetach czy materiałach marketingowych. Dla 20Mhz kanału i transmisji w zestawie jeden nadajnik – jeden odbiornik osiągamy 65 Mbps przy GI = 800ns w porównaniu do 72.2 Mbps przy GI = 400ns. Jeszcze lepiej wygląda sytuacja kiedy porównamy transmisje przy tak często spotykanych (ironia) zestawach 4 nadajniki i  4 odbiorniki i wykorzystaniu kanału o szerokości 40Mhz – 540 Mbps przy GI = 800ns w porównaniu do 600 Mbps przy GI = 400ns. Różnica jest znacząca prawda, szczególnie dla działów marketingu – a to że ciężko znaleźć urządzenie końcowe wspierające 4 stream’y – o tym pisałem już tutaj.

OK – tyle teorii, ale dlaczego w praktyce używanie w teorii bardziej wydajnego systemu, oferującego większa teoretyczna przepływność radiową, czyli użycie 400 nanosekundowego Guard Interval jest nie do końca właściwe i może nam przysporzyć więcej problemów niż korzyści? No i tutaj cofamy się do czasów studiów i dla tych, który cokolwiek mieli wspólnego z radiotelekomunikacją, przypomną się zjawiska falowe. Każda fala może ulegać zjawiskom dyfrakcji, odbicia oraz załamania i nie chcąc się rozpisywać o każdym z tych zjawisk można powiedzieć jedno. Im bardziej skomplikowane środowisko propagacyjne tym więcej zjawisk falowych będzie występować, powodując różne czasy docierania symboli w transmisji sieci bezprzewodowych miedzy nadajnikiem a odbiornikiem. A nie ma bardziej skomplikowanego środowiska propagacyjnego dla sieci bezprzewodowych niż… typowe biuro. Bardzo duże zagęszczenie elementów aluminiowych, szklanych, podwieszane sufity, podłogi techniczne to wszystko powoduje ze w systemach 802.11n/ac, czyli na dzień dzisiejszy 80% systemów, następuje zjawisko wielotorowości docierania pakietów w rożnym czasie, który będzie przeważnie przekraczał 400 nanosekund czyli będzie aktywny po ustawieniu tzw. Short Guard Interval. Co się dzieje w momencie „nachodzenia symboli” na siebie podczas transmisji? W ogolym skrocie zmiejsza nam się stosunek sygnalu do szumow, transmisja zostaje odebrana jako błedna i…. Nastepuje retransmisjia powodujaca spadek ogolnej przepustowości.

Jak to wygląda w praktyce?

Przykładowe testy w sordowisku producynym, czyli biuro w centrum Warszawy, interferncje od innych systemów 802.11 w 5Ghz – niskie, RSSI na pozimie od -57dBm do -54dBm:

  • Standard 802.11ac MCS index 8 przy 80 MHz szerokości kanału i 1 stream’ie powinien osiągać teoretyczne przepustowości:
    • 351 Mbps – Guard Interval ustawionym na 800ns
    • 390 Mbps – Guard Interval ustawionym na 400ns

Oczywiście musimy odjąć od tego narzuty na kodowanie – i zostaje nam przy MCS index 8:

  • 263 Mbps – Guard Interval ustawionym na 800ns
  • 293 Mbps – Guard Interval ustawionym na 400ns

Natomiast wielkokrotne pomiary (w celu uśrednienia wartości) wykonanie iPerf3 wykazują następujące przepływności:

  • 220 Mbps – Guard Interval ustawionym na 800ns
  • 112 Mbps – Guard Interval ustawionym na 400ns

Czyli w typowym środowisku biurowym ustawienie Guard Interval na wartości 800ns jest dla nas korzystniejsze niż skonfigurowanie tzw. Short Guard Interval (400ns), który to parametr tylko w teorii pozwala nam na osiągniecie wyższej przepustowości teoretycznej. Warto sprawdzić ustawienie swoje kontrolera sieci bezprzewodowej, ponieważ niektórzy producenci sprzętu, w tym rozwiązań typu Enterprise, ustawiają wartości domyślne na 400ns często nazywając to Short Guard Interval i opisując to jako korzystne ustawienie zwiększające przepustowość rozwiązania sieci bezprzewodowej.

Gdzie szukać ustawienia Guard Interval w konfiguracji kontrolera sieci bezprzewodowej? W związku z tym, że jest to ustawienie globalne dla Access Pointa lub grupy Access Pointow, konfiguracji Guard Interval szukamy, w zależności od producenta, przeważnie w profilu konfiguracji AP lub konfiguracji RF.

Przykłady domyślnych konfiguracji urządzeń:

Aruba – kontroler 7004-RW i domyślny domyślny profil SSID.

Short Guard Interval ARUBA
Rys. 2 – Domyślne ustawienie w Short Guard Interval (400ns) w urządzeniach Aruba – tryb kontrolera – Configration -> Wireless -> AP Configuration -> Default profile -> Virtual AP -> SSID -> HT SSID

Alcatel Lucent Enterprise – kontroler OmniVista i domyślny profil RF ktory aplikowany jest domyślnie na wszystkie Access Pointy podłączone do kontrolera.

Short Guard Interval Alcatel Lucent Enterprise
Rys. 2 – Domyślne ustawienie w Short Guard Interval (400ns) w urządzeniach Alcatel Lucent Enterprise – tryb Enterprise – kontroler OmniVista. WLAN Menu -> RF -> RF Profile -> Default profile

Kontakt

Opisane problemy brzmią znajomo? Skontaktuj się z nami w celu rozmowy na temat rozwiązania Twoich problemów sieci bezprzewodowej.


pl_PLPolski