Co to jest DFS?

W tym artykule przedstawię czym jest DFS, czyli dynamiczny wybór częstotliwości WiFi. Przedstawię czemu w jakim paśmie występuje, na których kanałach operuje oraz jak dokładnie działa.

Wstęp

W zakresie ogólnodostępnych częstotliwości 5GHz działa nie tylko komunikacja WiFi 802.11, ale również wiele innych technologii. Mogłoby się wydawać, że skoro jest to częstotliwość ogólnodostępna, to każdy ma „równoprawny” dostęp do medium. Ale są zastosowania, które dla tego pasma mają wyższy priorytet od innych. Nazywamy ich operatorami dominującymi. Jeśli pojawi się jeden z nich, pozostali użytkownicy częstotliwości nie mogą kontynuować komunikacji.

Dynamiczny wybór częstotliwości DFS (ang. Dynamic Frequency Selection) umożliwia działanie WiFi w częstotliwościach z restrykcjami, wspólnie z istniejącymi operatorami dominującymi takimi jak: radar meteorologiczny, radary wojskowe oraz inne systemy nieradarowe.

W jednym z wcześniejszych postów „Jak przeprowadzić analizę przyczyn problemów z Wi-Fi?” przedstawiłem wycinek alokacji częstotliwości radiowych w przedziale 300MHz-3GHz oraz 3GHz-30GHz. Z ogromnego zakresu tylko wąskie przedziały pozostały dostępne ogólnie i wcale nie są one do pełnej dyspozycji dla komunikacji WiFi.

Za przypisanie zastosowania do danego zakresu odpowiadają regionalne agencje regulacyjne. W zależności od regionu świata odpowiada konkretna Główne agencja regulacyjna:

  • Federalna Komisja Łączności (FCC) – USA
  • ISED – Kanada
  • Ofcom – Wielka Brytania
  • ETSI – Unia Europejska
  • ACMA – Australia

Poniżej przedstawiłem częstotliwości wykorzystywane przez WiFi w ramach pasma 5GHz. Zakres zaznaczony na niebiesko to spektrum WiFi, które wymaga aktywnego działania systemu DFS. Chcąc korzystać z częstotliwości wolnych od DFS pozostaje nam zaledwie 1/3 dostępnych kanałów. Planując sieć o dużej gęstości AP lub wymagającej dużej pojemności prawdopodobnie będzie koniecznym skorzystanie z kanałów DFS. Nie jest to problemem, o ile będziemy świadomi, co to dla nas oznacza.

Pasmo 5GHz i kanały WiFi DFS

Powody zwolnienia kanału DFS

Przestrzeganie zasad działania na kanałach WiFi DFS ma ogromne znaczenie dla dominujących operatorów danego zakresu widma. Mowa o wojsku, radarach, komunikacji satelitarnej, ale nie tylko. Na kanałach 120-128 działają lotniskowe radary dopplerowskie (TDWR – Terminal Doppler Weather Radar). Punkty dostępowe nasłuchują operatorów dominujących i muszą natychmiast opuścić kanał, jeśli jest zajęty.

Radary TDWR wykrywają lokalne uskoki wiatru. Jest to kluczowa funkcja na lotniskach mająca ogromne znaczenia dla bezpieczeństwa samolotów podczas lądowania. Przy zbyt dużym wiatrze bocznym samolot może mieć trudności z lądowanie, jak na obrazku poniżej.

Lądujący samolot który wpadł w uskok wiatru

W ramach protokołu WiFi zostały wprowadzone dwa rozszerzenia 802.11d-2001 oraz 802.11h-2003. Ich zadaniem jest rozgłaszanie i obsługa domen regulacyjnych oraz standaryzują niektóre zasady i zachowania umożliwiając AP działanie w pasmach DFS. Domeny regulacyjne mogą być zaszyte na sztywno lub mogą być konfigurowalne przez administratora. W obu przypadkach zalecam zachowanie ostrożności, dokładne sprawdzenie parametrów i odpowiednie skonfigurowanie sieci.

Działanie na kanałach DFS

CAC – sprawdzenie dostępności kanału

Pierwszym krokiem, jaki wykonuje AP chcą działać na kanale DFS jest kontrola dostępności kanału (CAC – Channel Availability Check). Punkt dostępowy musi wpierw potwierdzić, że nie ma na nim żadnych operatorów dominujących. Czas nasłuchiwania wynosi 60 sekund. AP rozpoczyna korzystanie z kanału, jeśli w danymczasie nie wykrył żadnego operatora dominującego. W przypadku regulacji w EU, dla kanałów 120-128 cisza musi trwać przez minimum 10 minut. Za monitorowanie i wykrywanie DFS odpowiedzialny jest AP, natomiast urządzenia klienckie postępują zgodnie z instrukcjami AP.

ISM – stałe monitorowanie

Jeśli AP już pracuje na kanale WiFi z DFS, musi stale monitorować w trakcje dwojej pracy (ISM In-Service Monitoring) wykorzystywany kanał DFS pod kątem działania operatorów dominujących. Jeśli AP wykryje zdarzenie DFS, musi zaprzestać pracy na danym kanale. Może to zrobić natychmiast, porzucając swoich klientów. Lub może zmienić kanał z gracją, używając komunikatów o zmianie kanału, przygotowując klientów.

CSA – ogłoszenie o zmianie kanału

Ogłoszenie o przełączeniu kanału (CSA – Channel Switch Announcement) może być wysłane jako Action Frame lub Beacon IE (IE – Information Element).

CSA w formie Action Frame ma bardzo prostą postać, zawiera trzy informacje: Channel Switch Mode, New Channel Number oraz Channel Switch Count. Parametry CSM i CSC mają wartośc 0, natomiast NCN wskazuje numer kanału na który AP się przełączy.

PCAP CSA w formie Actions Frame

Sposób reakcji klientów na informację o zmianie kanału może być wielooraki i zależy od kodu zaszytego w sterowniku. Niektóre urządzenia mogą przełączyć się natychmiastowo do innego AP, o którym wiedzą, że jest w zasięgu. W ten sposób kompletnie omijając problem zmiany kanału. Są urządzenia, które mając na uwadze dotychczasową jakość obsługi, będą podążać za AP. Niestety są też urządzenia, które nie mają zaszytej żadnej logiki, nie wykonają żadnej akcji i po utracie zasięgu wdrożą procedurę Panic Roaming.

Beacon IE jest rozszerzoną formą CSA. Poniższy przykład takiego CSA ma ustawiony Channel Switch Count na 10. Wartość jest zmniejszana o 1 przy każdym następnym wysłanym komunikacie. Zmiana kanału nastąpi, gdy wartość będzie wynosić 0. Zwykle CSC=10 oznacza zmianę kanału za 1 sekundę, aczkolwiek zależy to od skonfigurowanej częstotliwości rozgłaszania beacon’ów. Typowo kolejny broadcast jest wysyłany co ok 100ms.

PCAP CSA w formie Beacon IE

Parametr Channel Switch Mode definiuje akceptowalne zachowanie klientów do momentu zmiany kanału. CSM o wartości 0 pozwala klientom na dalszą transmisję danych do AP, dopóki kanał nie zostanie zmieniony. Wartość 1 nakazuje klientom natychmiastowe zaprzestanie jakiejkolwiek komunikacji na kanale.

W ramach rozszerzonej wersji CSA możliwe jest zawarcie również klasy działania (OP – Operating Class). Jest to dodatkowo informacja dla urządzeń precyzująca pasmo oraz szerokość kanału. Na poniższym przykładzie przedstawiony jest komunikat wskazujący na klasę 3, w szczególności kanał 116 o szerokości 20MHz

PCAP CSA w formie Beacon IE z Operation Class

NOP – powrót na kanał DFS

Praca AP na jednym z kanałów DFS może być spowodowana dużą gęstością AP i poszukiwaniem wolnego kanału. Dlatego też, po ucieczce AP z częstotliwości DFS może on „chcieć” powrócić na pierwotny kanał. Zanim to się stanie, AP musi odczekać okres braku zajętości (NOP – Non-Occupancy Period), który wynosi 30 minut. Po tym czasie AP musi wpierw sprawdzić CAC zanim zdecyduje się na powrót na pierwotny kanał.

DFS Operation Flow

Praca AP na kanałach DFS związana jest z przestrzeganiem następującego cyklu. Każdy AP kontroluje dostępność kanału i stale monitoruje zdarzenia w trakcie pracy. W przypadku wykrycie kolizji DFS musi ogłosić i wykonać zmianę kanału. A po odczekaniu okresu braku zajętości może próbować wrócić na pierwotny kanał sprawdzając wpierw jego dostępność.

Diagram działania WiFi w kanałach DFS

Teoria a rzeczywistość

Wszystko wygląda ładnie na papierze. A jak jest w rzeczywistości? Co robią AP po zmianie kanału? Ta część nie jest ustandaryzowana. Docelowy kanał może być ustalony przez kontroler w ramach RRM (ang. Radio Resource Management) lub może być zdefiniowana lista statyczna. Sposób wyboru kanału może zależeć od producenta, modelu AP lub nawet od wersji oprogramowania.

Po ucieczce z kanału DFS dany AP może zachować się na wiele sposobów. Może pozostać na stałe na innym kanale, a przynajmniej do pojawienia się powodu ponownej zmiany. AP może próbować powrócić do poprzedniego kanału DFS, co zgodnie z protokołem przed rozpoczęciem nadawania musi wykonać CAC, co jest związane z przerwą w działaniu (1 minuta lub 10 minut). Może przejść na inny kanał DFS – rozpoczęcie pracy na kanale DFS wymaga wykonania CAC, czyli również AP zamilknie na pewien czas. W najgorszym przypadku AP utknie w pętli wracania do kanału DFS co 30 minut i natychmiastowego przełączenia na inny kanał niż DFS ze względu na wystąpienie zdarzenia DFS. W najgorszym przypadku, będzie dostępny tylko przez 2/3 czasu pracy.

Na stronie www.thedfsproject.com znajduje się dokumentacja open-source opisująca zachowanie poszczególnych AP WiFi w przypadku wystąpienia zdarzenia DFS.

Problemy z DFS

Wymuszona poniekąd obsługa DFS ze względu na brak regulacji i standaryzacji całego procesu, zarówno dla AP jak i dla klientów, wprowadza dużą niepewność związaną z ciągłością komunikacji. Nigdy nie możemy założyć, że w naszej okolicy nigdy nie będzie operatorów dominujących. Nie wiemy, na których kanałach będą operować. Może się zdarzyć, iż pojawią się tylko na pewien czas i później więcej się nie pojawią. Ciężko również przewidzieć, jak zachowa się nasza infrastruktura, w szczególności nasze AP’ki.

Niestety zdarzają się fałszywe pozytywne rozpoznania DFS. Niektóre radia mogą być nadwrażliwe (często ze względu na przedłużający się proces certyfikacji). Czasami transmisja klientów jest rozpoznawana jak sygnał radaru.

Kolejnym problemem jest sposób działania urządzeń końcowych, w szczególności przy wolniejszym wykrywaniu AP oraz działaniem roamingu. Punkty dostępowe mogą być wykrywane tylko poprzez pasywne skanowanie wszystkich kanałów (ok 100ms na kanał), co przy konieczności sprawdzenia wszystkich kanałów generuje już spory okres czasu. Szczególnie że w tym czasie urządzenie końcowe nie przesyła i nie odbiera żadnych danych. Również samo przełączanie kanałów i związany z tym okres ciszy są niezwykle uciążliwe. Ma to największy wpływ na działanie komunikacji VoIP, ale również dla dowolnych aplikacji działających w czasie rzeczywistym.

Uwagi projektowe

Zanim zastosujesz u siebie kanały DFS zalecam dokładnie sprawdzić planowaną architekturę i lokalne środowisko. Należy stosować tylko takie AP, które zostały zatwierdzone przez lokalną lub regionalną agencję. Niezależnie od certyfikacji musisz zrozumieć i oczywiście przestrzegać zasady współdzielenia widma, w tym zasady DFS. Jeśli zgodnie z planem masz wykorzystywać kanały DFS, wpierw przetestuj dokładnie każdy z nich lub poproś kogoś, aby to dla Ciebie zrobił. W planowaniu ważne jest zrozumienie, w jaki sposób punkty dostępowe WiFi będą obsługiwać zdarzenia DFS oraz jakie są różnice w wykrywaniu punktów dostępowych na kanałach DFS oraz jaki to ma wpływ na roaming klientów.


Zachęcam do zapoznania się z naszą ofertą zawierającą między innymi usługę audytu sieci WiFi wraz z analizą RF oraz rozwiązania do wykrywania i diagnozowania problemów z sieciami bezprzewodowymi. W celu uzyskania szczegółów zapraszam do kontaktu z naszym działem handlowym.

Home Office w czasach kryzysu – Remote Access Point (RAP)

Obecne czasy związanie z pandemią Coronavirusa i sytuacja epidemiologiczna, spowodowały bardzo wysokie zapotrzebowanie na pracę zdalną dla wszystkich pracowników biurowych niezależnie od branży czy też rodzaju pracy wykonywanej przez pracownika. 

Dla działów IT to także bardzo duże przedsięwzięcie techniczne oraz logistyczne ponieważ stają oni przed koniecznością uruchomienia zdalnego dostępu do zasobów firmy dla pracowników. W małych organizacjach, w których struktura dostępu do sieci jest płaska tj. każdy pracownik ma dostęp do tych samych zasobów, sytuacja wydaje się prosta: Tunel IPSec z uwierzytelnieniem użytkowników po loginie i haśle uruchomiony jako usługa przeważnie na Next Generation Firewall’u. 

Sytuacja staje się bardziej skomplikowana w sytuacjach gdy:

  • Dostęp dla poszczególnych pracowników jest profilowany w zależności od rodzaju pracownika, departamentu w którym pracuje
  • Nakładane są konkretne polityki QoS na dostęp do sieci, w sytuacji w której pracownik znajduje się w biurze oraz istnieje konieczność utrzymania tych samych polityk przy dostępie zdalnym
  • Pracownik w czasie swojej normlanej pracy korzysta z rożnych urządzeń, które posiadają sprofilowany dostęp do sieci oraz dostęp do sieci przez różne medium – przewodowe/bezprzewodowe, takie jak: telefony IP, thin client czy tez urządzenia BYOD.

Nie jest możliwe uruchomienie dostępu zdalnego dla wszystkich wyżej wymienionych sytuacji korzystając i opierając się tylko na rozwiązaniach i usługach uruchamianych na urządzeniach brzegowych i konieczne jest… wyniesienie korporacyjnej infrastruktury sieciowej do domu pracownika.

Brzmi bardzo groźnie, niezgodnie ze standardami oraz skomplikowanie w konfiguracji, natomiast rzeczywistość jest zupełnie inna i opiera się na wyposażeniu pracownika w specjalnego Access Pointa (często tez wyposażonego z downlinkowe porty ethernetowe) który to w zależności od konfiguracji terminuje ruch z każdego SSID przez osobne szyfrowane tunele VPNowe. 

Poniższy rysunek przedstawia koncepcje uruchomienia tzw. Remote Access Point’a zlokalizowanego w domu pracownika, który rozgłasza profile SSID identyczne jak te dostępne w biurze i terminuje je poprzez łącze internetowe oraz tunel VPN do koncentratora, którym jest kontroler sieci bezprzewodowej.

Rys. 1 Graficzne przedstawienie architektury sieciowej przy zastosowaniu urządzeń typu Remote Access Point.
Rys. 1 Graficzne przedstawienie architektury sieciowej przy zastosowaniu urządzeń typu Remote Access Point.

Uruchomienie tego rodzaju wyniesionej infrastruktury jest banalnie proste do wdrożenia dla administratora IT, a architektura rozwiązania pozwala na uruchomienie nawet łączności L2 miedzy zasobami firmy a użytkownikiem wyniesionym. 

Powyższy rysunek ukazuje nam tez bardzo dużą zaletę tzw. Remote Access Point’ów czyli wbudowane porty Ethernetowe z zasilaniem PoE, pozwalające podłączyć do Access Pointa np. Telefon IP czy inne urządzenia sieciowe, które potrzebuje sprofilowanej łączności z zasobami korporacyjnymi.

Wszystkie Remote Access Pointy są przeważnie zarządzane z poziomu kontrolera sieci bezprzewodowej lub jednego spójnego systemu do zarządzenia siecią przewodową i  bezprzewodową, a w przypadku uwierzytelniania użytkowników i profilowania dostępu użytkowników per konkretne VLANy, polityki QoS wszystkie profile są przenoszone i aplikowane na urządzenia końcowe podłączone przez Remote Access Pointy, oferując identyczny dostęp do sieci jaki użytkownik, jego urządzenia oraz urządzenia dodatkowe otrzymałby w sytuacji korzystania z infrastruktury biurowej.

Przykładem architektury rozwiązania typu Remote Access Point, jest rozwiązania Alcatel Lucent Enterprise, gdzie urządzeniem końcowym jest OmniAccess Stellar AP1201H zgodnym ze standardem 802 802.11ac posiadający 3 porty Downlink 10/100/1000Base-T (RJ-45) w tym jeden wspierający Power over Ethernet (PoE) w standardzie 802.3af, do którego możemy podłączyć np. Telefon IP i terminować ruch z danego portu po uwierzytelnieniu telefonu do korporacyjnej sieci telefonicznej VoIP.

Potrzebujesz projektu tego typu rozwiązania? Masz pytania odnośnie tego wpisu? Skontaktuj się z nami

RSSI, SNR, Data Rate – jak czytać wyniki Audyt sieci WiFi

Podpisanie zlecenia, audyt sieci wifi, parę dni oczekiwania i otrzymujemy… raport z pomiarów sieci bezprzewodowej analizujący naszą sytuacje radiową. Pierwszy rzut oka i okazuje się nasz raport to kilkadziesiąt stron grafik i opisów zawierających takie nazwy i skróty jak: RSSI, SNR, RTP,  Channel Overlap, Data Rate, Throughput i inne. Na co zwrócić uwagę? Które elementy raportu są dla nas najważniejsze?

Zacznijmy od tego, że jeśli zwracasz się do firmy wykonującej audyt sieci WiFi z konkretnym problemem, to raport powinien zawierać tylko te elementy, które są ważne z punktu widzenia Twojego problemu oraz to ze wyniki powinny zostać omówione podczas osobnego spotkania lub call’a.

Zawieranie w raporcie wszystkich zebranych danych lub danych niezwiązanych z problemem, wprowadzają tylko element frustracji u zamawiającego i niepotrzebne skupienie uwagi na elementach, które nie są głównym źródłem problemów. 

Które to elementy są najważniejsze dla raportów Audyt sieci WiFi:

Signal Strength

moc odbieranego przez odbiornik sygnału. To główny i nieodłączny element każdego nawet tego najmniej skomplikowanego pomiaru. Czasami nazywany tez pokryciem radiowym. Generalnie przed pomiarami, firma wykonująca audyt powinna zebrać wymagania stawienie sieci bezprzewodowej i ustalić minimalny poziom mocy odbieranego sygnału aby usługi wymagane przez klienta działały prawidłowo. Moc odbieranego sygnału to RSSI (Received Signal Strength Indicator) i wyrażamy go dBm czyli decybelach odniesionych do wartości 1mW. Czyli jeśli wartość mocy emitowanego sygnału przez AccesPoint wynosi 17dBm to jest to równowartość 50mW a 3dB więcej czyli 20dBm to już 100mW. Podobnie sytuacja wygląda z mocą odbieraną -40dBm to 0.0001 mW.

Przykład wizualizacji RSSI w pasmie 2.4GHz

Wiec jak widać na powyższym przykładzie, w pomiarach lepiej nam się posłużyć wartościami wyrażanymi w dBm. Minimalnymi wartościami mocy odbieranego sygnału, akceptowalnymi dla sieci bezprzewodowych, to -67dBm. Chociaż nie ma co ukrywać w specyficznych warunkach środowiskowych (brak interferencji) i w specyficznych wymaganiach co do sieci,  nie musimy się obawiać wartości RSSI poniżej -74dBm.

SNR – Signal To Noise Ratio

czyli o ile (w dB) odbierany sygnał (w dBm) jest większy od szumu (w dBm) na tym samym kanale radiowym. Jest to kolejny najważniejszy parametr w pomiarach sieci bezprzewodowych, który pozwala nam określić jaka jest wartość szumu (w dBm) dla danego kanału radiowego. Wartości akceptowalne dla sieci to wartości powyżej 25 dB. Poziom SNR pozwala na ustalenie transmisji o konkretnej wartości. Im mniejsza wartość SNR tym transmisja będzie na niższym poziomie a ilość retransmisj będzie rosła nam liniowo. Dlatego tez RSSI na poziomie -40dBm (uważanym za wartości idealne) nic nam nie da kiedy szumy czy tez interferencje na tym samym kanele będziemy mieli o wartości -45dBm.

Data Rate

Data Rate” (szybkość przesyłu danych) oznacza maksymalną prędkość transferu danych między urządzeniami w sieci bezprzewodowej. Data Rate wyrażany jest w jednostce „Megabity na sekundę” (Mbps) i określa, ile bitów danych może być przesłanych w ciągu jednej sekundy. Im wyższa wartość Data Rate, tym szybciej można przesyłać dane między urządzeniami w sieci WiFi.

Z technicznego punktu widzenia Data Rate to wartość teoretycznej przepływności radiowej która można zostać osiągnięta przez klienta bezprzewodowego, a na jej wpływ maja takie czynniki jak:

pl_PLPolski