Home Office w czasach kryzysu – Remote Access Point (RAP)

Obecne czasy związanie z pandemią Coronavirusa i sytuacja epidemiologiczna, spowodowały bardzo wysokie zapotrzebowanie na pracę zdalną dla wszystkich pracowników biurowych niezależnie od branży czy też rodzaju pracy wykonywanej przez pracownika. 

Dla działów IT to także bardzo duże przedsięwzięcie techniczne oraz logistyczne ponieważ stają oni przed koniecznością uruchomienia zdalnego dostępu do zasobów firmy dla pracowników. W małych organizacjach, w których struktura dostępu do sieci jest płaska tj. każdy pracownik ma dostęp do tych samych zasobów, sytuacja wydaje się prosta: Tunel IPSec z uwierzytelnieniem użytkowników po loginie i haśle uruchomiony jako usługa przeważnie na Next Generation Firewall’u. 

Sytuacja staje się bardziej skomplikowana w sytuacjach gdy:

  • Dostęp dla poszczególnych pracowników jest profilowany w zależności od rodzaju pracownika, departamentu w którym pracuje
  • Nakładane są konkretne polityki QoS na dostęp do sieci, w sytuacji w której pracownik znajduje się w biurze oraz istnieje konieczność utrzymania tych samych polityk przy dostępie zdalnym
  • Pracownik w czasie swojej normlanej pracy korzysta z rożnych urządzeń, które posiadają sprofilowany dostęp do sieci oraz dostęp do sieci przez różne medium – przewodowe/bezprzewodowe, takie jak: telefony IP, thin client czy tez urządzenia BYOD.

Nie jest możliwe uruchomienie dostępu zdalnego dla wszystkich wyżej wymienionych sytuacji korzystając i opierając się tylko na rozwiązaniach i usługach uruchamianych na urządzeniach brzegowych i konieczne jest… wyniesienie korporacyjnej infrastruktury sieciowej do domu pracownika.

Brzmi bardzo groźnie, niezgodnie ze standardami oraz skomplikowanie w konfiguracji, natomiast rzeczywistość jest zupełnie inna i opiera się na wyposażeniu pracownika w specjalnego Access Pointa (często tez wyposażonego z downlinkowe porty ethernetowe) który to w zależności od konfiguracji terminuje ruch z każdego SSID przez osobne szyfrowane tunele VPNowe. 

Poniższy rysunek przedstawia koncepcje uruchomienia tzw. Remote Access Point’a zlokalizowanego w domu pracownika, który rozgłasza profile SSID identyczne jak te dostępne w biurze i terminuje je poprzez łącze internetowe oraz tunel VPN do koncentratora, którym jest kontroler sieci bezprzewodowej.

Rys. 1 Graficzne przedstawienie architektury sieciowej przy zastosowaniu urządzeń typu Remote Access Point.
Rys. 1 Graficzne przedstawienie architektury sieciowej przy zastosowaniu urządzeń typu Remote Access Point.

Uruchomienie tego rodzaju wyniesionej infrastruktury jest banalnie proste do wdrożenia dla administratora IT, a architektura rozwiązania pozwala na uruchomienie nawet łączności L2 miedzy zasobami firmy a użytkownikiem wyniesionym. 

Powyższy rysunek ukazuje nam tez bardzo dużą zaletę tzw. Remote Access Point’ów czyli wbudowane porty Ethernetowe z zasilaniem PoE, pozwalające podłączyć do Access Pointa np. Telefon IP czy inne urządzenia sieciowe, które potrzebuje sprofilowanej łączności z zasobami korporacyjnymi.

Wszystkie Remote Access Pointy są przeważnie zarządzane z poziomu kontrolera sieci bezprzewodowej lub jednego spójnego systemu do zarządzenia siecią przewodową i  bezprzewodową, a w przypadku uwierzytelniania użytkowników i profilowania dostępu użytkowników per konkretne VLANy, polityki QoS wszystkie profile są przenoszone i aplikowane na urządzenia końcowe podłączone przez Remote Access Pointy, oferując identyczny dostęp do sieci jaki użytkownik, jego urządzenia oraz urządzenia dodatkowe otrzymałby w sytuacji korzystania z infrastruktury biurowej.

Przykładem architektury rozwiązania typu Remote Access Point, jest rozwiązania Alcatel Lucent Enterprise, gdzie urządzeniem końcowym jest OmniAccess Stellar AP1201H zgodnym ze standardem 802 802.11ac posiadający 3 porty Downlink 10/100/1000Base-T (RJ-45) w tym jeden wspierający Power over Ethernet (PoE) w standardzie 802.3af, do którego możemy podłączyć np. Telefon IP i terminować ruch z danego portu po uwierzytelnieniu telefonu do korporacyjnej sieci telefonicznej VoIP.

Potrzebujesz projektu tego typu rozwiązania? Masz pytania odnośnie tego wpisu? Skontaktuj się z nami

RSSI, SNR, Data Rate – jak czytać wyniki Audyt sieci WiFi

Podpisanie zlecenia, audyt sieci wifi, parę dni oczekiwania i otrzymujemy… raport z pomiarów sieci bezprzewodowej analizujący naszą sytuacje radiową. Pierwszy rzut oka i okazuje się nasz raport to kilkadziesiąt stron grafik i opisów zawierających takie nazwy i skróty jak: RSSI, SNR, RTP,  Channel Overlap, Data Rate, Throughput i inne. Na co zwrócić uwagę? Które elementy raportu są dla nas najważniejsze?

Zacznijmy od tego, że jeśli zwracasz się do firmy wykonującej audyt sieci WiFi z konkretnym problemem, to raport powinien zawierać tylko te elementy, które są ważne z punktu widzenia Twojego problemu oraz to ze wyniki powinny zostać omówione podczas osobnego spotkania lub call’a.

Zawieranie w raporcie wszystkich zebranych danych lub danych niezwiązanych z problemem, wprowadzają tylko element frustracji u zamawiającego i niepotrzebne skupienie uwagi na elementach, które nie są głównym źródłem problemów. 

Które to elementy są najważniejsze dla raportów Audyt sieci WiFi:

Signal Strength

moc odbieranego przez odbiornik sygnału. To główny i nieodłączny element każdego nawet tego najmniej skomplikowanego pomiaru. Czasami nazywany tez pokryciem radiowym. Generalnie przed pomiarami, firma wykonująca audyt powinna zebrać wymagania stawienie sieci bezprzewodowej i ustalić minimalny poziom mocy odbieranego sygnału aby usługi wymagane przez klienta działały prawidłowo. Moc odbieranego sygnału to RSSI (Received Signal Strength Indicator) i wyrażamy go dBm czyli decybelach odniesionych do wartości 1mW. Czyli jeśli wartość mocy emitowanego sygnału przez AccesPoint wynosi 17dBm to jest to równowartość 50mW a 3dB więcej czyli 20dBm to już 100mW. Podobnie sytuacja wygląda z mocą odbieraną -40dBm to 0.0001 mW.

Przykład wizualizacji RSSI w pasmie 2.4GHz

Wiec jak widać na powyższym przykładzie, w pomiarach lepiej nam się posłużyć wartościami wyrażanymi w dBm. Minimalnymi wartościami mocy odbieranego sygnału, akceptowalnymi dla sieci bezprzewodowych, to -67dBm. Chociaż nie ma co ukrywać w specyficznych warunkach środowiskowych (brak interferencji) i w specyficznych wymaganiach co do sieci,  nie musimy się obawiać wartości RSSI poniżej -74dBm.

SNR – Signal To Noise Ratio

czyli o ile (w dB) odbierany sygnał (w dBm) jest większy od szumu (w dBm) na tym samym kanale radiowym. Jest to kolejny najważniejszy parametr w pomiarach sieci bezprzewodowych, który pozwala nam określić jaka jest wartość szumu (w dBm) dla danego kanału radiowego. Wartości akceptowalne dla sieci to wartości powyżej 25 dB. Poziom SNR pozwala na ustalenie transmisji o konkretnej wartości. Im mniejsza wartość SNR tym transmisja będzie na niższym poziomie a ilość retransmisj będzie rosła nam liniowo. Dlatego tez RSSI na poziomie -40dBm (uważanym za wartości idealne) nic nam nie da kiedy szumy czy tez interferencje na tym samym kanele będziemy mieli o wartości -45dBm.

Data Rate

Data Rate” (szybkość przesyłu danych) oznacza maksymalną prędkość transferu danych między urządzeniami w sieci bezprzewodowej. Data Rate wyrażany jest w jednostce „Megabity na sekundę” (Mbps) i określa, ile bitów danych może być przesłanych w ciągu jednej sekundy. Im wyższa wartość Data Rate, tym szybciej można przesyłać dane między urządzeniami w sieci WiFi.

Z technicznego punktu widzenia Data Rate to wartość teoretycznej przepływności radiowej która można zostać osiągnięta przez klienta bezprzewodowego, a na jej wpływ maja takie czynniki jak:

pl_PLPolish